
C Programming
Introduction

What is C?

● Imperative programming

language Statically typed

Low-level

Ubiquitous

Created by Dennis Ritchie in early 1970s to be the language
for UNIX

Standardized in C89 (ANSI C), C99 and C11

Inspiration for many other languages, e.g., C++, Objective-C,
Java, C#

Good FAQ at http://c-faq.com/

●

●

●

●

●

●

●

http://c-faq.com/

#include <stdio.h>

int x = 5; /* x is a global variable */

/*

This is a function called square. It takes a single int parameter and

returns an int.

*/

int square(int n) {

return n*n;

}

int main(int argc, char **argv) {

int n = 16;

printf("The square of %d is %d.\n", x, square(x));

printf("The square of %d is %d.\n", n, square(n));

if (x > n) {

printf("%d is larger than %d.\n", x, n);

} else {

printf("%d is not larger than %d.\n", x, n);

}

return 0;

}

#include <stdio.h>

int x = 5; /* x is a global variable */

/*

This is a function called square. It takes a single int parameter and

returns an int.

*/

int square(int n) {

return n*n;

}

int main(int argc, char **argv) {

int n = 16;

printf("The square of %d is %d.\n", x, square(x));

printf("The square of %d is %d.\n", n, square(n));

if (x > n) {

printf("%d is larger than %d.\n", x, n);

} else {

printf("%d is not larger than %d.\n", x, n);

}

return 0;

}

Execution starts here

#include <stdio.h>

int x = 5; /* x is a global variable */

/*

This is a function called square. It takes a single int parameter and

returns an int.

*/

int square(int n) {

return n*n;

}

int main() {

int n = 16;

printf("The square of %d is %d.\n", x, square(x));

printf("The square of %d is %d.\n", n, square(n));

if (x > n) {

printf("%d is larger than %d.\n", x, n);

} else {

printf("%d is not larger than %d.\n", x, n);

}

return 0;

}

Execution starts here

#include <stdio.h>

int x = 5; /* x is a global variable */

/*

This is a function called square. It takes a single int parameter and

returns an int.

*/

int square(int n) {

return n*n;

}

int main() {

int n = 16;

printf("The square of %d is %d.\n", x, square(x));

printf("The square of %d is %d.\n", n, square(n));

if (x > n) {

printf("%d is larger than %d.\n", x, n);

} else {

printf("%d is not larger than %d.\n", x, n);

}

return 0;

}

The square of 5 is 25.

The square of 16 is 256.

5 is not larger than 16.

Execution starts here

Getting used to Linux

● Head to a computer lab room with Linux
computers (top floor in house 1 or 2)
and play around a bit.

● Follow some tutorial online. For example
https://ryanstutorials.net/linuxtutorial/

● Try SSH’ing to one of the
department’s Linux servers from a laptop
etc.

https://ryanstutorials.net/linuxtutorial/
https://www.it.uu.se/datordrift/maskinpark/linux

Defining variables

● type_name var_name;

type_name var_name = initial_value;

int x;

char c = 'A';

unsigned long long bignum =

1000000000000;

●

●

●

●

Defining variables

● type_name var_name;

type_name var_name = initial_value;

int x;

char c = 'A';

unsigned long long bignum =

1000000000000;

●

●

●

●

Note 1: A variable is defined only in its scope

Defining variables

● type_name var_name;

type_name var_name = initial_value;

int x;

char c = 'A';

unsigned long long bignum =

1000000000000;

●

●

●

●

Note 1: A variable is defined only in its scope

Note 2: Reading an uninitialized variable (unless global or
static) leads to undefined behavior

Undefined behavior

● Many “bad” things in C (reading an uninitialized variable,
division by zero etc.) lead to undefined behavior.

In these cases, anything can happen!●

Undefined behavior

● Many “bad” things in C (reading an uninitialized variable,
division by zero etc.) lead to undefined behavior.

In these cases, anything can happen!●

Undefined behavior

● Many “bad” things in C (reading an uninitialized variable,
division by zero etc.) lead to undefined behavior.

In these cases, anything can happen!●

C is not safe!

Undefined behavior

C FAQ: Anything at all can happen; the
Standard imposes no requirements. The
program may fail to compile, or it may
execute incorrectly (either crashing or
silently generating incorrect results), or
it may fortuitously do exactly what the
programmer intended.

Undefined behavior

C FAQ: Anything at all can happen; the
Standard imposes no requirements. The
program may fail to compile, or it may
execute incorrectly (either crashing or
silently generating incorrect results), or
it may fortuitously do exactly what
the programmer intended.

Undefined behavior

C FAQ: Anything at all can happen; the
Standard imposes no requirements. The
program may fail to compile, or it may
execute incorrectly (either crashing or
silently generating incorrect results), or
it may fortuitously do exactly what
the programmer intended.

My view: If the program is incorrect, you
want it to crash already during testing!

Built-in integer types

Type name Size Notes

char At least 8 bits
The smallest

addressable unit that
can contain a single

character

short At least 16 bits

int At least 16 bits The “default” integer type

long At least 32 bits

long long At least 64 bits Only since C99

Built-in integer types

Type name Size Notes

char At least 8 bits
The smallest

addressable unit that
can contain a single

character

short At least 16 bits

int At least 16 bits The “default” integer type

long At least 32 bits

long long At least 64 bits Only since C99

Note: Each can be specified as signed or unsigned

Built-in integer types

Type name Size Notes

char

(neither by default)
At least 8 bits

The smallest
addressable unit that
can contain a single

character

short

(signed by default)
At least 16 bits

int

(signed by default)
At least 16 bits The “default” integer type

long

(signed by default)
At least 32 bits

long long

(signed by default)
At least 64 bits Only since C99

Note: Each can be specified as signed or unsigned

Other integer types

Type name Size Notes

intN_t

uintN_t

Exactly N bits

(N = 8, 16, 32, 64,

?)

Only available if
possible for the
implementation

int_leastN_t

uint_leastN_t

At least N bits

N = 8, 16, 32, 64, ?

The smallest integer
type available with at

least N bits

int_fastN_t

uint_fastN_t

At least N bits

N = 8, 16, 32, 64, ?

The fastest integer
type available with at

least N bits

● Since C99, there are more types defined in stdint.h

Usually better to include inttypes.h for some extras●

Built-in floating-point types

Type name Size Notes

float Usually 32 bits
Usually IEEE-754
single precision
floating point

double Usually 64 bits
Usually IEEE-754
double precision
floating point

long double
At least the size of

double
?

sizeof

● To find out the size in memory of any data type, you can
use the sizeof operator

sizeof gives the size in units of the size of char

→ sizeof(char) is 1 by definition

The given value is of the unsigned integer type size_t

●

●

Arrays

● An array is a fixed-size sequence of elements
of the same type

● Array elements are always stored contiguously
in memory

● There is no string type, C uses arrays of char

Arrays

● An array is a fixed-size sequence of elements
of the same type

● Array elements are always stored contiguously
in memory

● There is no string type, C uses arrays of char

Example array definitions:

int arr1[10];

int arr2[10] = {1,2,3,4,5};

int arr3[] = {1,2,3,4,5};

char s[] = "Hello";

Arrays

● An array is a fixed-size sequence of elements of
the same type

● Array elements are always stored contiguously in
memory

● There is no string type, C uses arrays of char

Example array definitions:

int arr1[10];

int arr2[10] = {1,2,3,4,5};

int arr3[] = {1,2,3,4,5};

char s[] = "Hello";

This syntax is only
possible during
initialization!

Arrays,cont.

● Every element in an array can be read and
written to independently

● Trying to read or write outside the bounds of an
array hopefully crashes the program – C performs
no bounds checking!

Arrays,cont.

● Every element in an array can be read and
written to independently

● Trying to read or write outside the bounds of an
array hopefully crashes the program – C performs
no bounds checking!

Example array uses:

int arr[] = {10,11,12,13,14};

int x =arr[0]; /* Setsx to 10 */

arr[4]=42; /* Writes 42to arr[4] */

arr[5] = 42; /* Anythinghappens! */

Arrays,cont.

● Every element in an array can be read and
written to independently

● Trying to read or write outside the bounds of an
array hopefully crashes the program – C performs
no bounds checking!

Example array uses:

int arr[] = {10,11,12,13,14};

int x =arr[0]; /* Setsx to 10 */

arr[4]=42; /* Writes 42to arr[4] */

arr[5] = 42; /* Anythinghappens! */

Multidimensional arrays

● You can create n-dimensional arrays for any n ≥ 1
● In memory these look just like a single large

array, but the compiler will calculate the indices
for you

Example:

int arr1[3][2] = {{0,1},{2,3},{4,5}};

/* arr2 is exactly like arr1 in memory */

int arr2[6] = {0,1,2,3,4,5};

arr1[2][0]; /* Evaluates to 4 */

Pointers (very briefly)

● A pointer is a memory address
● Pointers can be stored in variables of pointer type
● For any type t, there is a corresponding pointer

type t*

int a = 5; /* a is an integer */

int* ptr; /* ptr is a pointer to an integer */

A warning on syntax

int* a, b; int* a;

int b;

is the same as

A warning on syntax

int* a, b; int* a;

int b;

is the same as

Writing the * next to the variable name

instead is preferred for a bit of added clarity.

int *a, b; /* only a is a pointer */

int *a, *b; /* a and b are pointers */

Pointers (very briefly)

● Using referencing (the & operator) we can get

a pointer to any variable
● Using dereferencing (the * operator) we can get

the value stored at the address pointed to by a
pointer

int a = 5; /* a is an integer */

int *ptr; /* ptr is a pointer to an integer */

ptr = &a; /* The value of ptr is a's address */

*ptr = *ptr + 2; /* a is now 7 */

Arithmetic expressions

● Basic expressions: +, -, *, /,%

→ work as expected

Short forms:

● n++ sets n=n+1 and evaluates to old value of n
●++n sets n=n+1 and evaluates to new value of n

● n-- and --n similar

● n*=3 is equal to n=n*3 etc.

Boolean expressions

● There is no boolean type in C (well, there is in C99)

Boolean expressions evaluate to an int

→ 0 is interpreted as false

→ everything else is interpreted as true

E.g., if(42) and if(-3) will take the if-branch,

if(0) will not

●

●

●

Boolean expressions

● Comparisons: ==, !=, <, >, =<, =>

→ work as expected

Conjunction: &&

Disjunction: ||

Negation: !

●

●

●

Boolean expressions

● Comparisons: ==, !=, <, >, =<, =>

→ work as expected

Conjunction: &&

Disjunction: ||

Negation: !

●

●

●

Warning: Don't mix up = with ==, & with &&, or | with ||

A C compiler will happily let you write things like:

if (a = 5) {

// do something if a equals 5

}

if-else statements

if (a == 5) {

// do something when a == 5

} else if (a > 0) {

// do something when a > 0, but a != 0

} else {

// do something when a <= 0

}

while loops

int n = 4096;

while (n >= 1) {

// do something

n = n / 2;

}

for loops

int i;

for (i = 0; i < 10; i++) {

// do something

}

for loops

int i;

for (i = 0; i < 10; i++) {

// do something

}

for loops

int i;

for (i = 0; i < 10; i++) {

// do something

}

int i;

i = 0;

while (i < 10) {

// do something

i++;

}

break and continue

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

break and continue

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

printf("%c\n", s[i]);

}

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

break and continue

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

printf("%c\n", s[i]);

}

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the●

current iteration of the innermost loop
H

e

l

l

o

W

o

r

l

d

!

break and continue

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

if (s[i] == 'l') {

break;

}

printf("%c\n", s[i]);

}

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

break and continue
● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

H

e

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

if (s[i] == 'l') {

break;

}

printf("%c\n", s[i]);

}

break and continue

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

if (s[i] == 'l') {

continue;

}

printf("%c\n", s[i]);

}

break and continue

● The break statement immediately exits the

innermost loop

The continue statement immediately exits the

current iteration of the innermost loop

●

H

e

o

W

o

r

d

!

char s[] = "Hello World!";

int i;

for (i = 0; s[i] != 0; i++) {

if (s[i] == 'l') {

continue;

}

printf("%c\n", s[i]);

}

More...

● do-while loops

switch

statements gotos

●

●

Functions

● Functions are declared with a return type and
types for all parameters

→ use void as return type if the function returns
nothing

Functions

Functions are declared with a return type and
types for all parameters

→ use void as return type if the function returns
nothing

void print_n_times(char c, int n) {

int i;

for (i = 0; i < n; i++) {

printf(“%c\n”, c);

}

}

●

Functions

Functions are declared with a return type and
types for all parameters

→ use void as return type if the function returns

nothing

void print_n_times(char c, int n) {

int i;

for (i = 0; i < n; i++) {

printf(“%c\n”, c);

}

}

int is_ascii_lowercase(char c) {

if (c >= 'a' && c <= 'z') {

return 1;

}

return 0;

}

●

Functions, cont.

● Arguments to functions are pass-by-value

→ use pointers when you want pass-by-
reference

Functions, cont.

Arguments to functions are pass-by-value

→ use pointers when you want pass-by-
reference

#include <stdio.h>

void add_two(int n) {

n += 2;

}

int main() {

int a = 10;

add_two(a);

printf("%d\n", a); /* Prints 10 */

return 0;

}

●

Functions, cont.

Arguments to functions are pass-by-value

→ use pointers when you want pass-by-
reference

#include <stdio.h>

void add_two(int *n) {

*n += 2;

}

int main() {

int a = 10;

add_two(&a);

printf("%d\n", a); /* Prints 12 */

return 0;

}

●

printf and scanf

● Provides formatted input and output, respectively.

Declared in stdio.h (use #include <stdio.h>)

The first argument should be a format string which specifies
how the remaining arguments are to be printed

●

●

printf and scanf

● Provides formatted input and output, respectively.

Declared in stdio.h (use #include <stdio.h>)

The first argument should be a format string which
specifies how the remaining arguments are to be printed

int num = 37;

char ch = 'P';

double pi = 3.14159;

printf("The value of num is %d\n", num);

printf("%c follows %c in the alphabet\n", ch+1, ch);

printf("pi is approximately %f\n", pi);

●

●

printf and scanf

● Provides formatted input and output, respectively.

Declared in stdio.h (use #include <stdio.h>)

The first argument should be a format string which
specifies how the remaining arguments are to be printed

int num = 37;

char ch = 'P';

double pi = 3.14159;

printf("The value of num is %d\n", num);

printf("%c follows %c in the alphabet\n", ch+1, ch);

printf("pi is approximately %f\n", pi);

●

●

printf and scanf

● Provides formatted input and output, respectively.

Declared in stdio.h (use #include <stdio.h>)

The first argument should be a format string which
specifies how the remaining arguments are to be printed

int num = 37;

char ch = 'P';

double pi = 3.14159;

printf("The value of num is %d\n", num);

printf("%c follows %c in the alphabet\n", ch+1, ch);

printf("pi is approximately %f\n", pi);

●

●

The value of num is 37

Q follows P in the alphabet

pi is approximately 3.141590

Some printf format identifiers

Identifier Notes Example

%d Prints an int in decimal
printf("%d is a number", 5);

→ 5 is a number

%o / %x / %X

Prints an int in octal
/ hexadecimal /
HEXADECIMAL

printf("%o %x %X", 59, 59, 59);

→ 73 3b 3B

%.nf
Prints a float or double
with n digits after the point

printf("%.3f", 10.0 / 3);

→ 3.333

%c Prints a char as a character
printf("%c %c", 'A', 66);

→ A B

%s Prints a string
printf("I have %s cats", "two");

→ I have two cats

There are many more options, check documentation or the web!

Some scanf format identifiers

Identifier Notes Example

%d Reads an int in decimal
int a;

scanf("%d", &a);

%f / %lf Reads a float / double
double a;

printf("%lf", &a);

%c Reads a char as a character
char a;

scanf("%c", &a);

%s

Reads a string, will
automatically append a

null char

char a[10];

scanf("%s", a);

Some scanf format identifiers

Identifier Notes Example

%d Reads an int in decimal
int a;

scanf("%d", &a);

%f / %lf Reads a float / double
double a;

printf("%lf", &a);

%c Reads a char as a character
char a;

scanf("%c", &a);

%s

Reads a string, will
automatically append a

null char

char a[10];

scanf("%s", a);

Warning: printf and scanf (and many more C functions) are unsecure
when used naively. A bit more on this next time.

Using ssh to our servers

● You can use Secure Shell (ssh) to connect to the
department's UNIX servers from your own computer.

Some instructions on
https://www.it.uu.se/datordrift/faq/ssh

List of available Linux hosts on
https://www.it.uu.se/datordrift/maskinpark/lin
ux

List of available Solaris hosts on
https://www.it.uu.se/datordrift/faq/unixinloggni
ng

●

●

●

https://www.it.uu.se/datordrift/faq/ssh?lang=en
https://www.it.uu.se/datordrift/maskinpark/linux
https://www.it.uu.se/datordrift/faq/unixinloggning

Compiling with gcc

● The default C compiler on Linux is usually the GNU Compiler Collection
(GCC)
→ Also compiles other languages: C++, Objective-C, Ada...

To invoke GCC from a terminal and compile myfile.c:

gcc myfile.c -o myfile

To run your newly compiled program:

./myfile

A good idea to include optional flags to tell gcc how to behave,
for example:

●

●

●

-Wall

-std=c11

enables “all” warning messages

enables the extensions in the C11
standard

gcc -Wall -std=c11 myfile.c -o myfile

